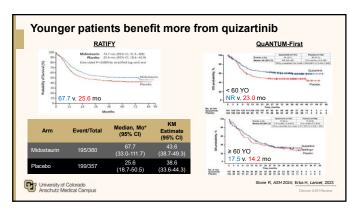
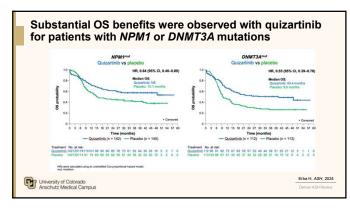


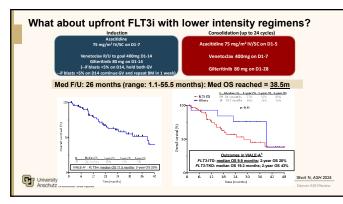

PrECOG0905 is the first randomized study to compare FLT3 inhibitors in ND FLT3mut AML Stratify TKD vs. ITD FLT3 Mutation INDUCTION2, 3, 4 CONSOLIDATION2,3 Arm A (7+3) + Gilteritinib Arm A Cytarabine 3 g/m² every 12 hours IV Days 1,3,5 for 6 doses for up to 4 cycles⁶ R A Z D O Z – N A F – O Z bine 100 mg/m²/day Jous infusion x 7 days starting R or CRi Pre-Scree ubicin 90 mg/m²/day IV Days Dauno 1, 2, 3 Gilteritinib 120 mg once daily x 14 days start Day 8 in screening sent, central b 120 mg daily d 8-21 1:1 FLT3 NPM1mutation Arm B Flow cytometr Cytarabine 3 g/m² every 12 hours IV Days 1,3,5 for 6 doses for up to 4 cycles⁶ Midostaurin E0 --- 0.57 19.21 staurin 50 mg BID x 14 days $\label{eq:constraint} \begin{array}{l} 1^{\circ} \mbox{ objective: Improve FLT3mut- CRc of patients with FLT3mut AML who receive induction chemotherapy + gilteritinib vs. midostaurin \end{array}$ Luger S, ASH 2024 University of Colorado Anschutz Medical Campus

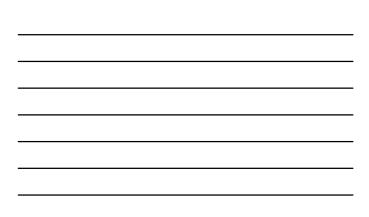

	Gilteritinib increased the CRc rate as compared to midostaurin						
• /	 177 eligible and treated Arm A (Gilteritinib) 90, Arm B (Midostaurin) 87 5 (5.6%) vs 6 (6.9%) received 2 cycles induction CRc (Gilteritinib) 85.6% vs 72.4% (Midostaurin), p=0.042 						
		Arm A (Gilteritinib) N=90	Arm B (Midostaurin) N=87	Overall (N=177)			
	CR	68 (75.6%)	57 (65.5%)	125 (70.6%)			
	CRi	9 (10%)	6 (6.9%)	15 (8.5%)			
	CRc	77 (85.6%)	63 (72.4%)	137 (79.3%)			
	No Response	13 (14.4%)	24 (27.6%)	37 (20.9%)			
	Iniversity of Colorado Inschutz Medical Campus				S, ASH 2024 r ASH Review		

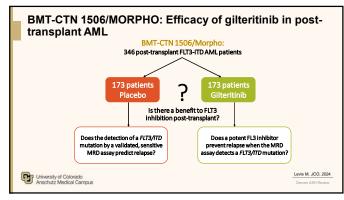
MRD negative	36 (40.0%)	46 (52.9%)	82 (46.3%)
MRD positive	39 (43.3%)	28 (32.3%)	67 (37.9%)
Dropped Out/Unknown	15 (16.7%)	13 (14.9%)	28 (15.8%)
	-	egative CRc post-induction) vs 47.1% Midostaurin (



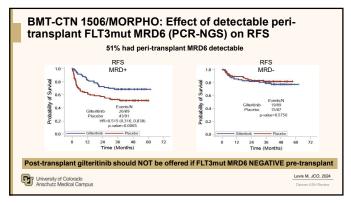
	Gilteritinib (Arm A) N=90	Midostaurin (Arm B) N=87	Overall N=177
Received 1 cycle Induction	90 (100%)	87 (100%)	177 (100%)
Received 2 cycles Induction	5 (5.6%)	6 (6.9%)	11 (6.2%)
Received >=1 Cycle Consolidation	67 (74%)	53 (61%)	120 (68%)
CR1 Transplant without consolidation	12 (13.3%)	13 (14.9%)	25 (12.4%)
CR1 Transplant	54 (60%)	40 (45.9%)	94 (53.1%)
FLT3mut analysis in 27		d were FLT3mut+ at end of ind consolidation cycle 1 Midostaurin (Arm B) N=9	uction and had MRD data Overall N=27
	available at end of Gilteritinib (Arm A)	consolidation cycle 1 Midostaurin (Arm B)	Overall
FLT3mut analysis in 27 FLT3m Status Negative	available at end of Gilteritinib (Arm A)	consolidation cycle 1 Midostaurin (Arm B)	Overall

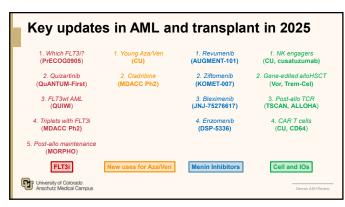




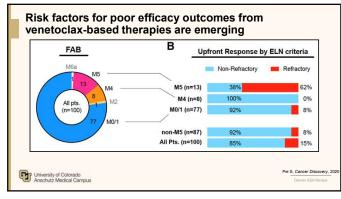

	+Quiz (n=180) v	s. 7+3 alone (n=93)		
Parameter	QUIZ	No QUIZ	HR/p value	FLT3 Like (N=80
Median EFS (mos)	18.8	9.9	0.73/.053	HR: 0.34; p=0.003
Median OS (mos)	NR	29.3	0.62/.009	Non-FLT3 Like (N=
% 3-yr OS	61	46	-	HR: 1.35; p=0.43
% CR-CRi	77	76	-	FLT3 Like (N=24
% allo SCT	40	32	-	HR: 0.27; p<0.00
Quizartinib benefit with	allo HSCT (HI	R: 0.59; p=0.16) Al	ND without allo HS	CT (HR: 0.64; p=0.0

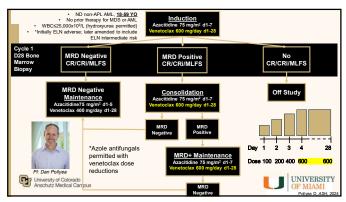
Regimen					
LDAC	9	44% (ITD/TKD)	9.8 mo (ITD/TKD)	Wei et al, Blood 2020 (VIALE-C subset	
LDAC + VEN	20	45% (ITD/TKD)	5.9 mo (ITD/TKD)	Weileral, 2000 2020 (VMCE-C Subse	
AZA	13	46%	8.5 mo	Konopleva et al, Clin Can Res, 202	
AZA + VEN	30	63%	9.9 mo	(VIALE-A subset)	
AZA	42	25%	4.3-13.4 mo		
AZA + Gilteritinib	60	64%	10.7-11.5 mo	Wang et al, Blood 2022 (Lacewing)	
AZA + VEN + Gilteritinib	73	93% (ПОЛКО)	(38.5 months) (ITD/TKD)	Short et al, ASH 2024	
LDAC + VEN (14d) + Quizartinib 60	30	40% (MUT+WT)	11.6 mo	Burgeus et al. EHA 2023 (VEN-A-QUI	
AZA + VEN (28d) + Quizartinib 60	31	45% (MUT+WT)	Not reached	Burgeus et al, EHA 2023 (VEN-A-QUI	
LDAC + VEN	7	57%	9.1 mo		
LDAC + VEN + Midostaurin (FLT3-ITD)	22	82%	16.6 mo	Chua et al, ASH 2024	



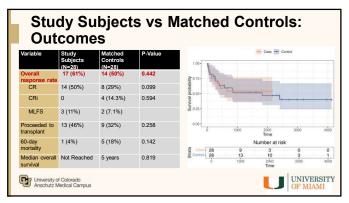

Safety Parameter	Gilteritinib (N = 178)*	Placebo (N = 177)
Treatment emergent acute GVHD ¹ grade II-IV	33 (18.5%)	36 (20.3%)
Treatment emergent chronic GVHD	93 (52.2%)	75 (42.4%)
Treatment emergent infection grade 3 or greater	58 (32.6%)	38 (21.5%)
TEAE ² leading to withdrawal of treatment	35 (19.7%)	19 (10.7%)
Drug-related TEAE leading to withdrawal of treatment	27 (15.2%)	14 (7.9%)
Drug-related TEAE leading to drug interruption	32 (18.0)%	12 (6.8%)
Drug-related grade 3 or higher TEAE	109 (61.2%)	45 (25.4%)
 GVHD = Graft versus host disease TEAE = treatment emergent adverse event 		

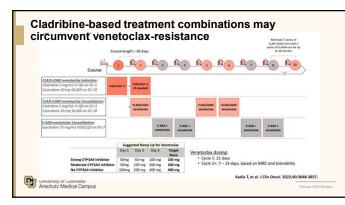



Grade 3 or higher Adverse Event, n(%)	Gilteritinib (N=178)	Placebo (N=177)
Neutrophil count decreased	44 (24.7%)	14 (7.9%)
Platelet count decreased*	27 (15.2%)	10 (5.6%)
Anemia	11 (6.2%)	3 (1.7%)
Alanine aminotransferase (ALT) increased	6 (3.4%)	4 (2.2%)
Creatine phosphokinase increased	12 (6.7%)	0 (0%)
* Includes unique cases of platelet count decrease and thrombo	ocytopenia	

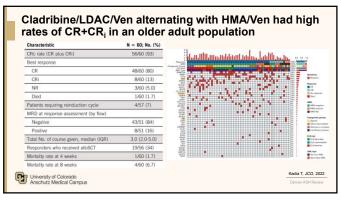




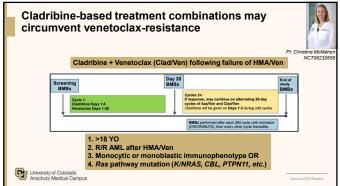


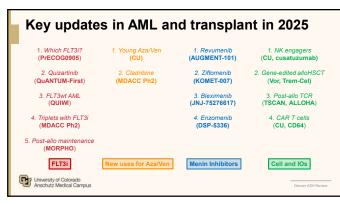


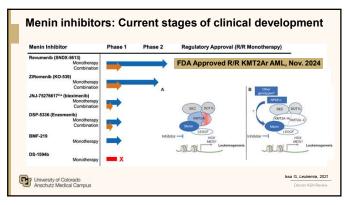
Variable	Value	Monocytic	4/8 (50%)*
Overall Response Rate	25/36 (69%)	Non Monocytic	20/28 (71%
CR	18	Myelodysplasia Related	16/21 (769
CRi	2	KMT2A Rearranged	3/6 (50%)
MLFS	5	mPRS	
MRD Negative Responses	16/25 (64%)	Higher Benefit	18/23 (78%
	40/00 (440()	Intermediate Benefit	5/9 (56%)
Proceeded to transplant due to study*	16/36 (44%)	Lower Benefit	2/4 (50%)
*Multiple additional subjects are pending	transplant		

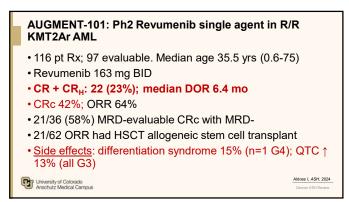


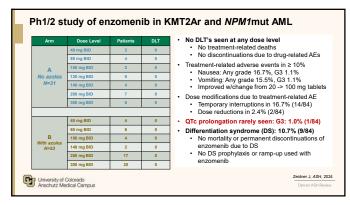


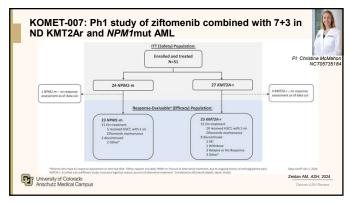

2	1
	. 1
~	-



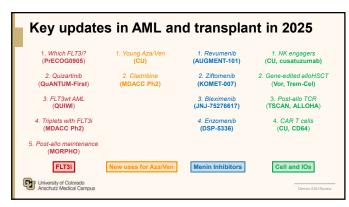


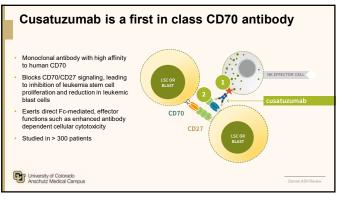




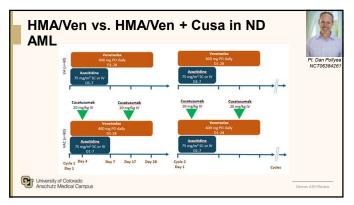


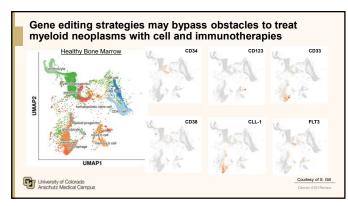
	study of bleximenib si 1mut AML	ingle a	gent in KM	Г2Ar ar	nd			
	s (108 AML, 6 ALL, 7 AL). Median age 61	yrs (18-85)						
	 KMT2A 73(60%); NPM1 48(40%) Blovinspik (Emg BID (n=15) 00 100mg BID (n=27) 150mg BID (n=28) 							
Differen	ntiation Syndrome: 13%, 2 fatal; <u>QTc ↑ in</u>	1 pt						
	% Response	45 mg	90-100 mg	150 mg				
	ORR	39	50	50				
	Composite CR	23	40	40				
	CR + CR _h	23	35	30				
CRc at	CRc at 90-100 mg BID: 44% in KMT2A, 33% in NPM1							
 Mediar 	n DOR 6.4 mo							
 Respo 	nses similar in KMT2A and NPM1							
	ty of Colorado Iz Medical Campus			-	earle E, ASH, 2024 Deriver ASH Review			


Clinical responses by		KMT2Ar			NPM1m			
ELN 2017	200 mg BID n = 8	300 mg BID n = 15	Total n = 23	200 mg BID n = 10	300 mg BID n = 7	Total n = 17		
Objective Response Rate (CR + CRh + CRi + MLFS)	50% (4/8)	73.3% (11/15)	65.2% (15/23)	60% (6/10)	57.1% (4/7)	58.8% (10/17		
Composite CR (CR + CRh + CRi)	37.5% (3/8)	53.3% (8/15)	47.8% (11/23)	50% (5/10)	42.9% (3/7)	47.1% (8/17)		
CR + CRh	12.5% (1/8)	<u>40.0% (6/15)</u>	30.4% (7/23)	50% (5/10)	42.9% (3/7)	47.1% (8/17)		
Activity similar with and without azoles Activity similar with and without azoles Arm A (10 pts total): ORR 70% (7/10) CR+CRh 40% (4/10) Arm B (30 pts total): ORR 60% (1830) CR+CRh 38.7% (11/30) Armong patients with primary refractory disease (n=7) ORR 80% (6/7) CR+CRh 57% (4/7)								

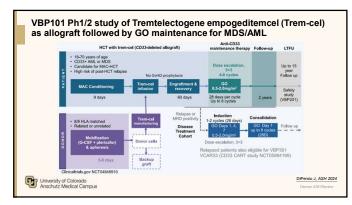


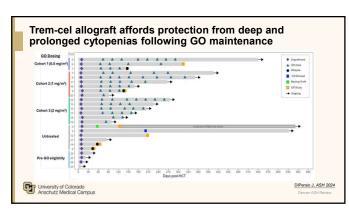
TEAEs, n (%) Grade 23	All Patients (N=51)	200 mg (n=8)	NPA 400 mg	62-m)			KM	2A-r	
Grade 23	(N=51)		400 mm						
		(0=8)	(n=7)	600 mg (n=9)	Total (n=24)	200 mg (n=10)	400 mg (n=9)	600 mg (n=8)	Tota (n=2
	46 (90)	8 (100)	6 (86)	8 (89)	22 (92)	10 (100)	8 (89)	6 (75)	24 (8
Febrile neutropenia	30 (59)	5 (63)	4 (57)	8 (89)	17 (71)	7 (70)	3 (33)	3 (38)	13 (4
Platelet count decreased	21 (41)	7 (88)	4 (57)	3 (33)	14 (58)	3 (30)	2 (22)	2 (25)	7 (2
Anemia	18 (35)	4 (50)	2 (29)	3 (33)	9 (38)	4 (40)	3 (33)	2 (25)	9 (3
Neutrophil count decreased	18 (35)	6 (75)	3 (43)	3 (33)	12 (50)	3 (30)	2 (22)	1 (13)	6(1
White blood cell count decreased	13 (26)	3 (38)	2 (29)	2 (22)	7 (29)	2 (20)	3 (33)	1 (13)	6 (2
Sepsis	7 (14)	2 (25)	0	2 (22)	4 (17)	1 (10)	1 (11)	1 (13)	3 (1
Pneumonia	6 (12)	1 (13)	2 (29)	0	3 (13)	2 (20)	0	1 (13)	3 (1
omenib in Comb	6 (12)	1 (13) 7+3-rela	2 (29) ited Adve	o rse Event	3 (13) s of Inter	2 (20) est	0	1 (13)	3 (1

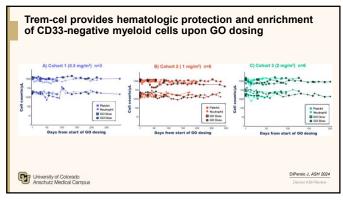

		10000	62-m			KM		
All Patients (N=46)	200 mg (n=8)	400 mg (n=7)	600 mg (n=8)	Total (n=23)	200 mg (n=10)	400 mg (n=9)	600 mg (n=4)	Total (n=23)
42 (91)	8 (100)	7 (100)	8 (100)	23 (100)	9 (90)	6 (67)	4 (100)	19 (83)
42 (91) 42 (91) 0 0 0 0 3 (7) 1 (2)	8 (100) 8 (100) 0 0 0 0 0 0	7 (100) 7 (100) 0 0 0 0 0 0	8 (100) 8 (100) 0 0 0 0 0 0	23 (100) 23 (100) 0 0 0 0 0 0 0	9 (90) 9 (90) 0 0 0 0 1 (10)	6 (67) 6 (67) 0 0 0 3 (33) 0	4 (100) 4 (100) 0 0 0 0 0 0 0	19 (83 19 (83 0 0 0 3 (13) 1 (4)
28/37 (76)	8/8 (100)	4/6 (67)	4/7 (50)	16/21 (76)	5/8 (63)	5/6 (83)	2/2 (100)	12/16 (7
	(N=46) 42 (91) 42 (91) 42 (91) 0 0 0 0 0 3 (7) 1 (2) 28/37 (76)	(N=46) (n=8) 42 (91) 8 (100) 42 (91) 8 (100) 42 (91) 8 (100) 0 0 0 0 0 0 0 0 0 0 12 (91) 8 (100) 28/37 (76) 8/8 (100)	(Printle) (printl) (printl) (printl) 42 (91) 8 (100) 7 (100) 42 (91) 8 (100) 7 (100) 42 (91) 8 (100) 7 (100) 0 0 0 0 0 0 0 0 0 12 (91) 8 (100) 4 (67) 22/07 (100) 8/8 (100) 4 (67)	(Pield) (piel) (pier) (pier) (pier) 44 091 81 (100) 7 (100) 81 (100) 44 091 81 (100) 7 (100) 81 (100) 44 091 81 (100) 7 (100) 81 (100) 60 0 0 0 0 0 0 0 0 0 0 107 0 0 0 0 0 0 107 0 <t< td=""><td>(Pix44) (pix0) (pix7) (pix4) (pix10) 44 (Pi) 8 (100) 7 (100) 8 (100) 23 (100) 44 (Pi) 8 (100) 7 (100) 8 (100) 23 (100) 44 (Pi) 8 (100) 7 (100) 8 (100) 23 (100) 0 0 0 0 0 0 0 0 0 0 0 0 0 10 0<</td><td>(Pin44) (pin4) (pin7) (pin4) (pin3) (pin4) 44 (Pin1) 61 (Dio) 71 (Dio) 61 (Dio) 231 (Dio) 91 (Dio) 44 (Pin1) 61 (Dio) 71 (Dio) 61 (Dio) 231 (Dio) 91 (Dio) 44 (Pin1) 61 (Dio) 71 (Dio) 61 (Dio) 231 (Dio) 91 (Dio) 60 (Dio) 71 (Dio) 61 (Dio) 70 (Dio) 60 (Dio) 90 (Dio) 90</td><td>(Pix44) (pix0) (pix0)</td><td>(bit4) (bit4) (bit4) (bit4) (bit4) (bit4) 41201 81.000 71.000 81.000 21.000 92.901 61.07 41.000 41201 81.000 71.000 81.000 21.000 92.901 61.07 41.000 41201 81.000 71.000 81.000 20.000 61.07 41.000 0<!--</td--></td></t<>	(Pix44) (pix0) (pix7) (pix4) (pix10) 44 (Pi) 8 (100) 7 (100) 8 (100) 23 (100) 44 (Pi) 8 (100) 7 (100) 8 (100) 23 (100) 44 (Pi) 8 (100) 7 (100) 8 (100) 23 (100) 0 0 0 0 0 0 0 0 0 0 0 0 0 10 0<	(Pin44) (pin4) (pin7) (pin4) (pin3) (pin4) 44 (Pin1) 61 (Dio) 71 (Dio) 61 (Dio) 231 (Dio) 91 (Dio) 44 (Pin1) 61 (Dio) 71 (Dio) 61 (Dio) 231 (Dio) 91 (Dio) 44 (Pin1) 61 (Dio) 71 (Dio) 61 (Dio) 231 (Dio) 91 (Dio) 60 (Dio) 71 (Dio) 61 (Dio) 70 (Dio) 60 (Dio) 90	(Pix44) (pix0) (pix0)	(bit4) (bit4) (bit4) (bit4) (bit4) (bit4) 41201 81.000 71.000 81.000 21.000 92.901 61.07 41.000 41201 81.000 71.000 81.000 21.000 92.901 61.07 41.000 41201 81.000 71.000 81.000 20.000 61.07 41.000 0 </td

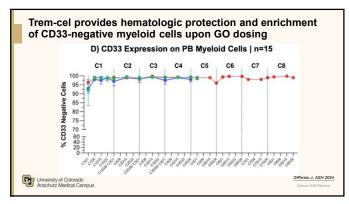


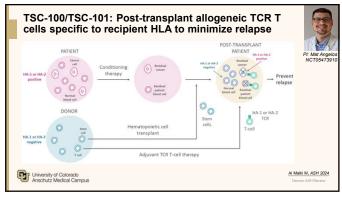


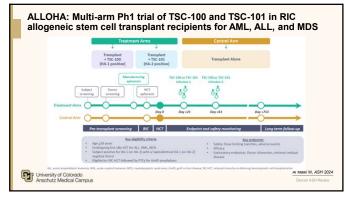


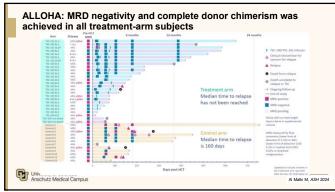


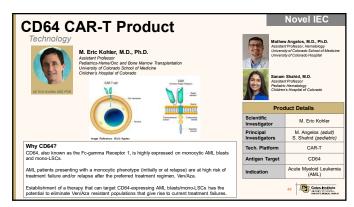






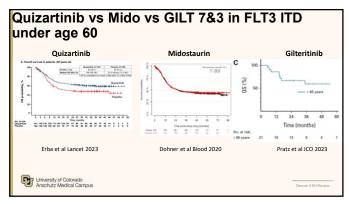






	7

Closing thoughts...


- Lower-intensity venetoclax-based regimens are appropriate in younger patients (in the right molecular contexts), but there is still a (shrinking) role for high-intensity induction.
- Venetoclax-resistance can be predicted and efforts should be made to enroll patients on clinical trials.
- More menin inhibitors are going to be approved and we will now have the (exhausting) task of deciding which one is "best" over the next 5 years.
- · Immuno- and cellular therapies are not dead in myeloid neoplasms.

University of Colorado Anschutz Medical Campus

49

50

